
Text-Guided Synthesis of Crowd Animation
Xuebo Ji

xueboji.cs@gmail.com
The University of Hong Kong

Centre for Transformative Garment Production (TransGP)
Hong Kong, China

Zherong Pan
zrpan@global.tencent.com

LightSpeed Studios
Seattle, WA, USA

Xifeng Gao
xifgao@global.tencent.com

LightSpeed Studios
Seattle, WA, USA

Jia Pan
jpan@cs.hku.hk

The University of Hong Kong
Centre for Transformative Garment Production (TransGP)

Hong Kong, China

Many people are entering from the entrance located at the bottom
right of the map, passing through the right access pathway and getting
into the top right door. The crowd in another direction that wants to
leave the subway passes through the left passage from the top left of
the map and leaves at the bottom left.

Some humans are moving from the right of the map and crossing the
crosswalk to get to the left. Some people also enter from the right are
walking along the left side of the building and finally exit at the top
right of the map. Others get into the map from the top left and move
along the right of the other building, then leave at the left.

Figure 1: Given the environment maps, we illustrate two crowd animation scenarios generated using the text prompts below.

ABSTRACT
Creating vivid crowd animations is core to immersive virtual en-
vironments in digital games. This work focuses on tackling the
challenges of the crowd behavior generation problem. Existing ap-
proaches are labor-intensive, relying on practitioners to manually
craft the complex behavior systems. We propose a machine learn-
ing approach to synthesize diversified dynamic crowd animation
scenarios for a given environment based on a text description in-
put. We first train two conditional diffusion models that generate
text-guided agent distribution fields and velocity fields. Assisted
by local navigation algorithms, the fields are then used to con-
trol multiple groups of agents. We further employ Large-Language
Model (LLM) to canonicalize the general script into a structured
sentence for more stable training and better scalability. To train

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0525-0/24/07
https://doi.org/10.1145/3641519.3657516

our diffusion models, we devise a constructive method to generate
random environments and crowd animations. We show that our
trained diffusion models can generate crowd animations for both
unseen environments and novel scenario descriptions. Our method
paves the way towards automatic generating of crowd behaviors
for virtual environments. Code and data for this paper are available
at: https://github.com/MLZG/Text-Crowd.git.

CCS CONCEPTS
• Computing methodologies→ Procedural animation.

KEYWORDS
Diffusion Model, Multi-Agent Navigation, Collision Avoidance,
Crowd Simulation

ACM Reference Format:
Xuebo Ji, Zherong Pan, Xifeng Gao, and Jia Pan. 2024. Text-Guided Syn-
thesis of Crowd Animation. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Conference Papers ’24 (SIGGRAPH
Conference Papers ’24), July 27–August 01, 2024, Denver, CO, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3641519.3657516

https://orcid.org/0009-0002-9698-8924
https://orcid.org/0000-0001-9348-526X
https://orcid.org/0000-0003-0829-7075
https://orcid.org/0000-0001-9003-2054
https://doi.org/10.1145/3641519.3657516
https://doi.org/10.1145/3641519.3657516


SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Xuebo Ji, Zherong Pan, Xifeng Gao, and Jia Pan

1 INTRODUCTION
As a major part of the modern game production pipeline, creating
vivid virtual content is labor-intensive. Groups of artists take years
to figure out the game logic, create visual environments, and design
intelligent character behaviors. In response, a large body of engi-
neering and research efforts have been devoted to accelerating the
content creation pipeline. These efforts have proven to be success-
ful in many ways including automatic 3D model and environment
synthesis [Fisher et al. 2012; Kelly et al. 2018], procedural model-
ing [Cogo et al. [n. d.]], and character motion synthesis [Zhu et al.
2023]. Comparatively, the collective dynamic behavior of groups of
characters has received relatively less attention. Prior works in this
area such as [Lemonari et al. 2022] focus on tools for editing crowd
animations, where artists still need to manually craft and fine-tune
the motion trajectories for each environment, which requires a
non-trivial learning curve. Further, these tools ignore the fact that
a virtual environment contains rich prior information to generate
plausible motion trajectories of the crowd. For example, humans in
a city should cross the road at zebra crossings and traverse on side-
walks. Regretfully, such environmental information has never been
used in prior crowd animation generators. In this work, we propose
a novel approach that can automatically generate crowd animation
behaviors from intuitive text descriptions that are compatible with
environment settings.

Automatic generation of environment-compatible crowd anima-
tions is a significantly challenging task for several reasons. First,
the relationship between the environment and agent behaviors
is multi-modal and hard to represent. To exactly describe these
relationships requires tedious annotations or planning of paths.
Further, these relationships are non-deterministic, making the ex-
act description undesirable. For example, a social-rule following
agent might always walk along the sidewalks, while a disobedi-
ent agent can sometimes walk on the roadway. Second, the agents
can exhibit diversified behaviors in different environments and the
complexity and dimensionality of agent behaviors vary drastically
as well. For example, an empty playground can have relatively few
agents playing sports requiring fast motions, while a large crowd in
a convention center moves slowly and stops here and there. Such
inhomogeneous agent distributions and diversified behaviors can
hardly be represented in a unified manner. Existing works use finite
state machines, such as behavior trees [Ghzouli et al. 2023], which
is again labor-intensive and becomes the bottleneck of the current
game design pipeline.

To the best of our knowledge, we introduce the first-ever
pipeline that targets at language-guided generation of environment-
compatible scenarios involving a large number of agents navigating
in real-time. To this end, we use the local navigation algorithm
RVO [Van den Berg et al. 2008] as our backend simulator to
generate collision-free agent trajectories. We further follow [He
et al. 2016; Kim 2004; Luo et al. 2021] and assume agents are
divided into multiple groups with similar goals, where each
group is controlled by a common velocity field. Based on these
assumptions, our method takes as input a map of the environment,
and a general script describing the behavior of multiple groups
of agents. We then utilize the powerful Large Language Models
(LLM) to canonicalize the script into a structured sentence for each

group of agents. Each structured sentence is then input to a Latent
Diffusion Model (LDM) to predict a velocity field for navigating
the agent group. Finally, we devise a constructive method for
synthesizing a dataset of randomized environments and agent
behaviors. Combined, we show that our method generalizes well
to unseen environment maps and agent behaviors.

2 RELATEDWORK
We review related work in automatic content creation, crowd ani-
mation and simulation, and language-guided generative models.

2.1 Automatic Content Creation
Due to their significant societal impact, the area of content cre-
ation represents decades of combined efforts in computer graphics,
computer vision, and computational physics. The vast majority of
early works on content creation are focused on procedure model-
ing [Cogo et al. [n. d.]], aiming at generating static 3D models or
scene layouts. In parallel, the development of physics-based model-
ing [Erleben et al. 2005] and character locomotions [Guo et al. 2015]
allows for the generation of animated motions for passive physical
phenomena or actuated characters. However, a common drawback
of these techniques is their case-by-case nature, i.e., a separate set
of techniques is needed for generating different types of models,
such as buildings, chairs, and planes, or animations, such as balanc-
ing, walking, and grasping. Integrating all these techniques into a
comprehensive content creation tool could be a formidable task,
which largely compromises their domain of applications. Thanks
to the maturity of deep generative models, the past five years have
witnessed the success of generalized machine learning models that
can create contents across multiple domains. For example, the 3D-
GAN [Wu et al. 2016] encodes in its latent space 3D models with
drastically different topology and geometry. Hu et al. [2020] learns
to generate structured layouts of floor plans with a rich variety.
Peng et al. [2021] proposes an algorithm to learn general character
motions with multiple skills. Our method also falls into the cate-
gory of diversified content creation of crowd simulation scenarios,
where our technique can adapt to arbitrary given environments.

2.2 Crowd Animation
Relatively few works have focused on the creation of collective
motions for multiple agents, which is core to a vivid virtual envi-
ronment. Early works in this area provide efficient tools to create
and edit the navigating behavior of crowds. For example, Pettre
et al. [2005] represents the environment as a graph and searches for
agent paths on the graph. Oshita and Ogiwara [2009] proposes a
sketch-based interface for crowd motions. Kim et al. [2014] restrict
agent motions to an editable cage. However, these works are still
labor-intensive and require artists to craft the approximate motion
paths. Further, these methods do not utilize the environmental prior
to assisting in the generation of plausible agent motions. In parallel,
several data-driven techniques [Bera et al. 2016; Guy et al. 2011;
Kim et al. 2016; Li et al. 2015] have been proposed to generate more
intelligent agents that exhibit different styles [Bera et al. 2016; Guy
et al. 2011] and react to abnormal situations [Kim et al. 2016]. Unfor-
tunately, these techniques are focused on low-level motions, while
the high-level navigation trajectories still need to be provided as



Text-Guided Synthesis of Crowd Animation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

A large group enters from the bottom right 
entrance, moves through the right passage, 
exits through the top right export.

A large group enters from the top left 
entrance, moves through the left passage, 
exits through the bottom left export.

Many people are entering from the 
entrance located at the bottom right of the 
map, passing through the right access 
pathway and getting into the top right door. 
The crowd in another direction that wants 
to leave the subway passes through the 
left passage from the top left of the map 
a n d  l e a v e s  a t  t h e  b o t t o m  l e f t .

LLM

CLIP

Start/Goal
Diffusion

Model

Velocity
Diffusion

Model

Noised Start/Goal Map Denoised Start/Goal Map: 𝐼𝑠/𝐼𝑔

Denoised Velocity Field 𝐼𝑣Noised Velocity Field

Simulated Agents

Semantic Map

Figure 2: The overall pipeline of our method. The inputs to our method (yellow) involve a general text describing agent motions and a semantic
environment map 𝐼𝑒 . We use an LLM to canonical the text, extracting a set of sentences {𝑠 𝑗 }, one for each agent group. Each sentence is embedded
by a CLIP model to guide our start/goal diffusion model for start/goal map generation (blue), given the semantic map. Next, guided by the semantic
map, the text prompts, and the start/goal distribution map 𝐼 𝑗𝑠,𝑔 , our velocity diffusion model infers the velocity field 𝐼 𝑗𝑣 to navigate the agent group
(blue). Finally, we can sample agents according to the distribution map and then use the velocity map to guide our RVO agent simulator (red).

inputs. In addition, although these techniques elevate the individ-
ual intelligence of agents, they do not incorporate the connection
between the environment and the collective behaviors of agents.
Finally, we are aware of a class of crowd-driven environment design
algorithms [Aschwanden et al. 2011; Chakraborty et al. 2017; Feng
et al. 2016] that bear a strong connection with our method. These
methods aim at designing an environment that achieves certain
agent-related goals, e.g., reachability and congestion-free. Instead,
our method represents the inverse procedure of these techniques.
Given a known environment, we predict compatible and plausible
agent motions guided by a text description.

2.3 Crowd Simulation
Modern crowd animation systems are divided into two stages. The
aforementioned crowd animation system provides the high-level
motion trajectories for agent groups, while the low-level crowd
simulator ensures the collision-free locomotions of each individual
agent. Our method is focused on the high-level crowd animation,
while we reuse existing velocity-field-based techniques [Patil et al.
2010; Thalmann et al. 2004; Treuille et al. 2006; Ye et al. 2023] to
simulate each group of agents. This method is a well-known solu-
tion for controlling an arbitrarily large swarm by having each agent
sample their velocity from the field. Several works such as [Treuille
et al. 2006] have incorporated various modifications to the veloc-
ity field for generating more realistic and congestion-free agent
motions.

However, the velocity field alone cannot ensure exact collision-
free among agents. Local navigation algorithms [Karamouzas et al.
2017; Van den Berg et al. 2008] are developed to this end. These
methods model the multi-agent system as a general dynamics sys-
temwith collision-free constraints, and cast the crowd simulation as
the numerical integration of the dynamics system. Methods [Fiorini

and Shiller 1998; Van Den Berg et al. 2011; Van den Berg et al. 2008]
based on the Velocity Obstacle (VO), for example, are widely used
for local collision avoidance in multi-agent systems. VO [Fiorini
and Shiller 1998] calculates the approximate set of velocities that
could lead to future collisions. The agent can then navigate safely
by choosing velocities outside these regions. Reciprocal Velocity
Obstacles (RVO) [Van den Berg et al. 2008] extends VO by consid-
ering the velocities of two potentially colliding agents, enabling
cooperative collision avoidance. Compared to VO, RVO promotes
smoother motions in the multi-agent settings. In this work, we use
a machine learning algorithm to predict the guiding velocity field
from a given environment. Then, we use RVO as the local plan-
ner to generate collision-free navigation trajectories, given initial
velocities sampled from the velocity field.

2.4 Language-Guided Generative Models
The most recent development of LLM and LDM unlocks the full
ability of learning models in representing data with rich varieties.
They quickly find applications in a wide spectrum of areas in com-
puter graphics and computer vision, which includes the generation
of 2D images [Rombach et al. 2022], 3D models [Poole et al. 2022],
avatars [Wang et al. 2023], textures [Cao et al. 2023], gestures [Ao
et al. [n. d.]], and character animations [Rempe et al. 2023]. Their
interface with language encoders allows amateur users to create
faithful content from intuitive guidance in the form of languages
and internet images. Our work extends this ability to the area of
crowd animation scenarios. As two closely related works, both
Zhong et al. [2023] and Rempe et al. [2023] aim at generating multi-
agent animations for vehicles and human characters, respectively,
both of which are based on LDM. However, their model predicts a
short future trajectory for each agent using a separate, costly model
inference, rendering them less efficient for real-time applications.



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Xuebo Ji, Zherong Pan, Xifeng Gao, and Jia Pan

Instead, our model generates a global guiding velocity field for the
entire environment using a single inference.

3 METHOD
Our method takes as input a given environment represented as a
semantic map, as well as a text description of the agent behaviors.
We then detect a set of agent groups. For each agent group, we
predict its start and goal distributions and generate a velocity field
to navigate the group. The pipeline of our method is illustrated
in Figure 2. In this section, we first introduce the problem setups
in Section 3.1. We then describe our method to extract the num-
ber of agent groups and generate the canonical sentence for each
group (Section 3.2). Next, we describe our model for predicting the
start/goal distributions and guiding velocity fields in Section 3.3.
Finally, we describe our constructive dataset and training method
in Section 3.4.

3.1 Multi-Agent Navigation Scenario Synthesis
We assume that the artists have already designed and annotated
the landscape of a virtual environment, which is a rather mild as-
sumption in the game industry. Indeed, artistic assets have been
annotated and reused considerably in the modern game production
pipeline. Level designers also use these annotations as an essential
part of the gameplay logic. Therefore, we assume that the annotated
environment is represented using one-hot encoding and rasterized
as a𝐶 ×𝐻 ×𝑊 image 𝐼𝑒 , where𝐶 is the number of different seman-
tic types in the environment and 𝐻 ×𝑊 is the image resolution.
Further, we require the user to provide a general text-based de-
scription 𝑇 about how agents should move in the environment
and we provide an example in Figure 2. Notably, we allow users to
provide descriptions for an arbitrary number of agents, and we do
not require users to be precise or follow any structures in crafting
these descriptions. Given 𝐼𝑒 and 𝑇 , our goal is to generate a set A
of agent and controller pairs, denoted as:

A ≜ {⟨𝑥0, 𝜋 (𝑥) ↦→ ¤𝑥⟩},

where the position of the agent at the 𝑡 th timestep is denoted as 𝑥𝑡
and the agent’s moving direction is calculated as ¤𝑥𝑡 ← 𝜋 (𝑥𝑡 ). We
require that the generated collective agents’ behaviors be compati-
ble with the environment map 𝐼𝑒 and conform to the description 𝑇 .
Further, our method is targeted at real-time applications. Therefore,
the cost of inferring ¤𝑥𝑡 for all agents must be reasonably low.

3.2 Generating Canonicalized Text Prompts
To achieve a low cost of inference, ourmain assumption is the group-
based motion of agents, which has been explored in many prior
works on agent simulation and planning [He et al. 2016; Kim 2004;
Luo et al. 2021]. Indeed, human crowds tend to spontaneously form
groups during navigation, which is beneficial for both congestion
resolution and social-rule following. As a result, the user input is
an arbitrary text 𝑇 that contains descriptions of multiple groups.

However, such descriptions can contain several sources of am-
biguities. On the high level, the order of descriptions for different
groups can be arbitrary or mixed. The tense and order of each sen-
tence can be different. On the low level, the description of entities in
the environment might be inaccurate, e.g., referring to tall buildings

as skyscrapers, or referring to crosswalks as zebra crossings. Al-
though our method uses pre-trained image-text embedding model
CLIP [Radford et al. 2021] to extract visual concepts from simple
text prompts, their text encoder is not trained with such complex
text scripts as our inputs. Therefore, we propose to remove ambi-
guity in 𝑇 and extract canonicalized sentences describing agent
motions, which can be well digested by CLIP.

Our idea is inspired by recent works on LLM-assisted robot
motion and task planning [Lin et al. 2023; Singh et al. 2023]. Specif-
ically, we provide GPT-4 [Achiam et al. 2023] with an instruction
describing our requirement on canonical sentences: First, each sen-
tence should describe the motion of one group of agents. Second,
each sentence should use only present tense and take the structure
as illustrated in Figure 3, where each comma-separated clause de-
scribes a concrete action performed by the group in the temporal
order. We further require that the term in each <> bracket must be
chosen from a preset dictionary. We find this method very effective
in transcribing sentences to unified forms, which significantly im-
proves the performance of our downstream methods for predicting
agent distributions and velocity fields. We denote this procedure as
a function mapping 𝑇 into a set of sentences {𝑠 𝑗 }, where we use
superscript 𝑗 to denote the group index. More details can be found
in our supplementary documents.

3.3 Diffusion-based Agent Generation & Control
Given each sentence 𝑠 𝑗 , our next step is to generate a subset of
agents A 𝑗 ⊆ A exhibiting the navigation paths that conform to
the sentence. To this end, we use two separate stages for predict-
ing the agent distributions and control policies, respectively. We
notice several prior works on traffic trajectory prediction [Alahi
et al. 2016; Ma et al. 2019] and human detection [Nguyen et al.
2016] that partially address these problems. However, these meth-
ods are not suitable in our work because they solve the problem
in an agent-centric manner, i.e., a separate inference or computa-
tional procedure is conducted for each agent, which cannot achieve
real-time performance when scaling to tens or hundreds of agents.
Instead, we propose an image-based representation. For the 𝑗th
group, we introduce three images 𝐼 𝑗𝑠 , 𝐼

𝑗
𝑔 , and 𝐼

𝑗
𝑣 . The first two im-

ages 𝐼 𝑗𝑠 and 𝐼 𝑗𝑔 represent the spatial probability field of initial and
final agent positions, respectively. Specifically, at an arbitrary loca-
tion 𝑥 , 𝐼 𝑗𝑠 (𝑥) is the probability that an agent exists at 𝑥 . Similarly,
𝐼
𝑗
𝑔 (𝑥) is the probability that the agent at 𝑥 leaves the scenario and
should be deleted. Our third image 𝐼 𝑗𝑣 represents the velocity field,
i.e. 𝐼 𝑗𝑣 (𝑥) represents the velocity along which an agent at 𝑥 should
move.

Our representation has two major benefits. First and foremost,
after predicting 𝐼 𝑗𝑠 , 𝐼

𝑗
𝑔 , and 𝐼

𝑗
𝑣 , our method allows the efficient gen-

eration and simulation ofA 𝑗 . Specifically, given 𝐼 𝑗𝑠 , we first sample
an agent centered at each pixel 𝑥 according to 𝐼

𝑗
𝑠 (𝑥). We assume

that all agents have a unit radius 𝑟 and adopt the Poisson disk
sampling [Bridson 2007] to remove all overlapping agents. For all
the agents from various groups, we then simulate their collision-
free navigation trajectories using the local navigation algorithm
RVO [Van den Berg et al. 2008], with 𝐼

𝑗
𝑣 being the guiding velocity.

Finally, during each simulation frame, we remove agent 𝑥𝑡 ∈ A 𝑗 ac-



Text-Guided Synthesis of Crowd Animation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

cording to probability 𝐼 𝑗𝑔 (𝑥𝑡 ). This simulation procedure can achieve
real-time performance and has been adopted in several existing
game engines.

As a second benefit, our representation is entirely image-based,
lending itself to efficient generative models such as [Goodfellow
et al. 2020; Rombach et al. 2022]. Further, the cost of inference is
invariant to the number of agents or the length of trajectories. To
predict the three images, we adopt the LDM proposed in [Rombach
et al. 2022], which is known to achieve superior performance in rep-
resenting multi-model distributions as required in our application.
Our data distribution is denoted as 𝑑0 ∼ 𝑞(𝑑0). The LDM is based
on the diffusion process that gradually injects noise into the data
distribution over𝑇 timesteps, denoted as 𝑑0:𝑇 ∼ 𝑞(𝑑1:𝑇 |𝑑0)𝑞(𝑑0). A
learnable model is then trained to reverse the diffusion process us-
ing a parameterization of form 𝑝𝜃 (𝑑0:𝑇 ) = 𝑝 (𝑑𝑇 )

∏𝑇
𝑡=1 𝑝𝜃 (𝑑𝑡−1 |𝑑𝑡 ),

with 𝜃 being learnable parameters. We follow Denoising Diffu-
sion Probabilistic Models (DDPM) scheme [Ho et al. 2020] and
re-parameterize the inverse procedure using a predicted noise com-
ponent 𝜖𝜃 (𝑑𝑡 , 𝑡, ℎ), which is to be subtracted from 𝑑𝑡 to yield:

𝑑𝑡−1 ∼ N
(

1
√
𝛼𝑡

(
𝑑𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑑𝑡 , 𝑡, ℎ)
)
, 𝜎𝑡 𝐼

)
,

where 𝛼𝑡 is pre-defined noise magnitude, 𝛼𝑡 =
∏𝑡

𝑠=1 𝛼𝑠 , and 𝜎𝑡 is
a pre-defined noise variance. The diffusion model can further be
conditioned on a latent signal ℎ, which encodes multi-model user
guidance, such as text prompts, semantic maps, sketches, etc. In our
work, we use the group-wise action sentence 𝑠 𝑗 as our guidance
signal, which is encoded using CLIP.

At the early stage of this research, we trained a single LDM to
predict all three fields at once. However, the test-time performance
of such a model is not satisfactory. In particular, we observe that the
velocity fields oftentimes fail to form a path guiding agents from
their start to goal positions. To mitigate this problem, we propose
two diffusion models. Our first model jointly predicts the start and
goal distributions 𝐼 𝑗𝑠,𝑔 , while our second model is conditioned on
the start and goal maps to then predict the velocity fields 𝐼 𝑗𝑣 . To
sum up, our generative model is defined using the following two
denoising processes for each group:

ℎ 𝑗 = CLIP(𝑠 𝑗 )

𝐼
𝑗

𝑠,𝑔,𝑡−1 =
1
√
𝛼𝑡

(
𝑑𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝐼
𝑗
𝑠,𝑔,𝑡 , 𝐼𝑒 , 𝑡, ℎ

𝑗 )
)

𝐼
𝑗

𝑣,𝑡−1 =
1
√
𝛼𝑡

(
𝑑𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝐼
𝑗
𝑣,𝑡 , 𝐼𝑒 , 𝐼𝑠 , 𝐼𝑔, 𝑡, ℎ

𝑗 )
)
.

(1)

Note that the two diffusion models are trained separated without
gradient back-propagation.

3.4 Dataset Preparation and Training
In order to train our generative model, we need a dataset with
semantic maps 𝐼𝑒 , the canonical group-wise sentence set {𝑠 𝑗 }, as
well as the groundtruth maps 𝐼 𝑗𝑠,𝑔,𝑣 for each group. To the best of
our knowledge, we are unaware of any datasets that provide such
complete set of annotations. Therefore, we propose a constructive
method to generate such a dataset. We assume the environment
contains seven types of entities: obstacles in the shape of circle,
cube, and triangle, start and goal areas, zebra crossings, and narrow

passages. For each type of entity, we further define a set of anchor
points as well as edges connecting the anchor points. These points
and edges are summarized in Table 1.

T
TR

R

TL

L

BL BR
B

To generate an annotated data
term, we follow several steps. First,
we randomly sample the environment
map 𝐼𝑒 . To this end, we randomly
choose the environment to have 1− 3
start/goal area pairs. We then ran-
domly choose positions on the bound-
ary of 𝐼𝑒 to place these start/goal re-
gions. Next, we randomly choose 0−5
entities in the environment, each entity belongs to one of the first
5 types in Table 1 uniformly at random, with random position,
orientation, and scale. We further reject any environment maps
with collisions between entities, entities outside the image, or the
number of pixels that an entity occupies is beyond the range shown
in Table 1. Note that we allow continuous orientation between
0◦ − 360◦ and we rotate the anchor points along with the entity.
As a result, the text description for an anchor point might change
when rotated. To determine the description, we evenly divide the
space into 8 sectors, each spanning 45◦. The anchor description is
assigned based on the sector it belongs to, as shown in the inset.
At this point, we can generate the groundtruth 𝐼𝑒 using a 𝐶 = 9-
dimensional one-hot representation, where the first 8 dimensions
correspond to each type of entity. Note that the narrow passage
entity takes up two dimensions, corresponding to the two obstacles
and the traversable region between them, respectively. The last 9th
dimension corresponds to the background pixels.

Next, we sample the number of agent groups also in the range
of 1 − 3. Note that we assume distinct start regions for all agent
groups, while their goal regions might be the same, so we reject
agent groups with the same start regions, after which we have
sampled the groundtruth 𝐼

𝑗
𝑠,𝑔 . For each agent group, we sample

their navigation path by incrementally sampling anchor points
until some goal region is sampled. If the current anchor point is on
some entity, then we sample the next anchor on the same entity
with a high probability of 0.7. We further reject an anchor point in
one of the following cases: 1) The direct line segment connecting the
next anchor point is in collision; 2) The path has loops or more than
9 anchor points; 3) the path contains an acute angle of degree less
than 90◦, indicating agents turning back. This meticulous approach
ensures the generation of viable and realistic navigation paths for
the agent groups in the simulation.

Finally, we generate the groundtruth canonical sentence 𝑠 𝑗 for
each agent group. To this end, we follow the same canonical struc-
ture as in Figure 3 and we generate the shortest sentence that
summarizes agent motions using the following rules: 1) the first
< action > is always “enter area” and the last < action > is always
“leave area”; 2) if an agent visits only one anchor point of an entity,
we define the < action > as “pass by”; 3) if an agent visits two
anchor points of an obstacle, we define the < action > as “pass
by edge”; 4) if an agent visits more than two anchor points, we
define the < action > as “circle around”; 5) if agents move through
a narrow passage or zebra crossing, we define the < action > as
“cross”. Note in case 3-5), we use additional < action_adjective > to



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Xuebo Ji, Zherong Pan, Xifeng Gao, and Jia Pan

Table 1: From top to bottom, we show name, figure, (comma-separated) anchor points in reference frame, edges, and number of pixels each entity
can occupy in 𝐼𝑒 after random scaling (the image 𝐼𝑒 has a resolution of 1024 × 1024). In the figure, anchor points and edges are highlighted in
blue, and non-traversable obstacles are highlighted with black borders. (T=Top, B=Bottom, L=Left, R=Right, C=Center, H=Horizontal, V=Vertical)

Name Circular Obs. Cubical Obs. Triangular Obs. Zebra Crossing Narrow Passage Start Goal

Figure
Anchors TL,TR,BL,BR TL,TR,BL,BR T,L,R T,B,L,R T,B C C
Edges T,B,L,R T,B,L,R B,L,R V,H V N/A N/A
#Pixel [70-100] [70-100] [70-100] [170-200] [170-200] 80 80

define the direction of motion. Finally, we use the canonical term
to refer to each anchor point as explained in Figure 3. To increase
the variety of our dataset, we define a set of synonymous terms
for each < • > term and randomly use one of the synonyms. We
further randomly drop the optional () block.

Given the sampled path, our final step constructs the groundtruth
velocity field 𝐼

𝑗
𝑣 . Our goal is to create a stable, error-corrective

velocity field, such that, when agents deviate from the path, they
will be guided back to follow the path. Such velocity field has been
studied in prior work [Rezende et al. 2021], where velocities at
faraway positions are designed to direct towards the nearest point
on the path. However, we find that such a velocity field will push
agents to be concentrated on the path, forming a queue, which is not
plausible. Instead, we propose a method to modify the velocity field
to have agents scattered around the path. To this end, we notice
that agents cannot concentrate on the path because they need
to be collision-free. As a result, we propose a simulation-assisted
velocity adjustment procedure based on RVO [Van den Berg et al.
2008]. Specifically, we initialize and simulate a reference group of
50 agents to follow the path, and we assume the RVO-adjusted,
collision-free velocity to be the more plausible velocity, so we blend
the adjusted velocity with the original velocity. This simulation and
update procedure is performed repeatedly for 15 iterations. Our
adjustment procedure is summarized in Algorithm 1, where we
denote ¤̄𝑥𝑡 as the RVO adjusted velocity.

Algorithm 1 Velocity Field Adjustment

1: Input: Path following 𝐼 𝑗𝑣 and learning rate 𝛼
2: Output: Adjusted 𝐼 𝑗𝑣
3: for iter=1, · · · , 15 do
4: Updated 𝐼 𝑗𝑣 ← 𝐼

𝑗
𝑣

5: Initialize 50 agents at start region: {𝑥0}
6: for Each simulation timestep 𝑡 = 0, 1, · · · do
7: for Each agent 𝑥𝑡 do
8: ¤𝑥𝑡 ← 𝐼

𝑗
𝑣 (𝑥𝑡 )

9: {⟨𝑥𝑡+1, ¤̄𝑥𝑡 ⟩} ← RVO({⟨𝑥𝑡 , ¤𝑥𝑡 ⟩})
10: for Each agent 𝑥𝑡+1 do
11: Update 𝐼 𝑗𝑣 (𝑥𝑡 ) ← normalize(𝐼 𝑗𝑣 (𝑥𝑡 ) + 𝛼 ¤̄𝑥𝑡 )
12: Apply updated 𝐼 𝑗𝑣 ← 𝐼

𝑗
𝑣

13: Return 𝐼
𝑗
𝑣

Using the aforementioned procedure, we sample a dataset of
57600 tuples of < 𝐼𝑒 , {𝑠 𝑗 }, {𝐼 𝑗𝑠,𝑔,𝑣} >, in which we retain the same

number of tuples with 0 − 5 entities in the environment and 1 − 3
agent groups for a balanced amount of training data, i.e. 3200 tuples
in each case. We use the following standard DDPM loss [Ho et al.
2020] to train our two diffusion models: E𝑑0,𝜖,𝑡

[
∥𝜖 − 𝜖𝜃 ∥2

]
.

4 EVALUATION
We parameterize the noise predictor 𝜖𝜃 using a down-scaled
UNet [Ronneberger et al. 2015]. Specifically for the start/goal
diffusion model, the number of channels for the 4 downsampling
layers is set to (80, 160, 320, 320) and the number of normalization
groups is set to 16. For the velocity diffusion model, the number
of channels is set to (160, 320, 640, 640) and the number of
normalization groups is set to 32. The resolution of 𝐼 𝑗𝑠,𝑔 and 𝐼

𝑗
𝑣 is

set to 64 × 64. We use 75% of the dataset for training and the rest
for testing. After experiments, we choose AdamW [Loshchilov
and Hutter 2017] as our training algorithm and use the standard
parameter settings there. We use 4 RTX 4090 GPU for the training
over 50 epochs for the start/goal diffusion model and 200 epochs
for the velocity diffusion model. Altogether, it takes 192 hours to
train both diffusion models. Runtime agent simulation is performed
using CARLA [Dosovitskiy et al. 2017]. Thanks to our efficient
representation of agents, both our inference and online simulation
are very efficient. Specifically, it takes less than 6 seconds to infer a
set of three maps 𝐼 𝑗𝑠,𝑔,𝑣 , and the runtime simulation cost is less than
1ms per timestep, making our method well suited for real-time
applications.

Qualitative Analysis. In Figure 1, 5, and 6, we provide details
of four navigation scenarios with unseen environments and text
descriptions. We refer readers to our supplementary materials for
more results. The first two benchmarks Figure 5 and 6 highlight
the ability of our method to handle unseen settings that are drasti-
cally different from our training dataset. In Figure 5 for example,
the environment has 10 entities and user requires a huge agent
group, while the passage is too narrow for all agents to pass at
once, and some agents would be pushed away from the trajectory.
Fortunately, our velocity field computed using [Rezende et al. 2021]
is error-corrective, where agents would be guided back to follow
the trajectory, however faraway they are. In Figure 6, we have 6
entities and 6 agent groups, each exhibiting complex trajectories
and our method can readily generalize to such cases. Our last two
examples in Figure 1 are mimicking real-world environments of a
subway station and downtown crosswalk.



Text-Guided Synthesis of Crowd Animation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Table 2: For each combination of agent group numbers and environmental entity numbers (excluding start and goal), we profile the ATD/SSR/RSR.
ATD is profiled in pixels, where the image resolution is 1024 × 1024.

#Entity 0 1 2 3 4 5

#Agent Group
1 1.519/0.978/0.981 1.275/0.982/0.991 1.411/0.973/0.991 2.870/0.950/0.977 4.283/0.923/0.977 10.828/0.830/0.926
2 2.116/0.971/0.974 1.276/0.979/0.990 1.868/0.968/0.987 3.603/0.940/0.979 5.555/0.905/0.968 9.401/0.853/0.951
3 2.394/0.969/0.970 2.035/0.969/0.985 2.474/0.958/0.980 4.600/0.930/0.972 6.016/0.897/0.961 9.956/0.844/0.936

Quantitative Analysis. We conduct a set of quantitative
evaluations on the testing set using three metrics. First, our
dataset contains a groundtruth trajectory for each agent group,
so we can compare the actual trajectory of each agent with the
groundtruth. To this end, we use the Dynamic Time Warping
(DTW) algorithm [Senin 2008] to factor out their speed changes
due to inter-agent collisions. DTW would compute a set of
distances at different time instances for each agent. Further, we
notice that our velocity adjustment Algorithm 1 allows agents to
be reasonably scattered around the trajectory, so we set a margin
of 80 pixels and we consider the agent to be on the trajectory
if their distance is within the margin. As our first metric, we
profile the average Agent-to-Trajectory Distance (ATD) over an
agent group. Our second metric is the Strict Success Rate (SSR)
profiled over all testing groups. To define SSR, we assume the agent
successfully follows the trajectory, if an agent is within the margin
of the trajectory for at least 70% time instances. If at least 80% of
the agents in a group are successful, we call the group successful.
Finally, we also profile a Relax Success Rate (RSR). RSR is similar
to SSR, but we assume an agent is successful if he/she is within the
margin for at least 50% time instances, and a group is successful
if at least 70% of the agents are successful. In Table 2, we profile
all three metrics for each combination of agent group numbers
and environmental entity numbers. Evidently, the performance
of diffusion model is satisfactory over all metrics. We observe an
increase in ATD as more entities are involved, which is due to
slight accuracy drop in predicting the velocity field. The ATD also
increases slightly as the number of agent groups increases, which
is due to collisions between different groups pushing agents away
from trajectories. Note that although ATD increases, SSR and RSR
do not drop much with number of agent groups or number of
entities, again validating the effectiveness of our method.

Comparative User Study. To evaluate the effectiveness of our
method, we conduct a comparative user study that leverages sce-
narios manually crafted in prior studies. Specifically, we choose the
Shibuya crossing scenario simulated in GAScrowd [Kim et al. 2012]
and use our pipeline to generate animations of a similar theme
from designed text descriptions. Subsequently, we engage human
participants in a comparative analysis of the two scenarios. Each
participant is asked to assign a score for each scenario, scaling from
1-5, where a higher score indicates better realism. A total of 12
participants were recruited. The participants were asked to sign an
informed consent form first and would get an equivalent coupon
based on the measurement of 38.3 USD per hour after the experi-
ment was completed. The statistical results show that 10 out of the
12 participants prefer the scenario generated by our method, and
our method achieves an average score of 4.08 as compared with

GAScrowd receiving a score of 2.91. The above results highlight
the competitiveness of our method in crowd scenario generation.

Diversity of Agent Behaviors. Due to the random dropout of
blocks in the input prompt during training and the stochastic nature
of diffusion models, our method can produce varied simulation out-
comes from identical text prompts across multiple executions while
conforming to the specification of the high-level description. This
controllable diversity can be reflected in the navigation trajectory
(resulted from the stochastic diffusion model), crowd distribution,
as well as crowd density (resulted from the random sampling in
the source region). As an illustration, we use a vague description to
run our pipeline twice. As shown in Figure 4 (a), the information
of “which circular obstacle to interact with” and “which exit to
leave through” are masked in our text description. Both of the two
scenarios conform to the constraints specified in the text, while
they demonstrate the diversity in the unconstrained parts, i.e. the
group (left) moves past the lower circle and leaves through the
upper exit while the other group (right) follows the opposite route.

Ablation Study. We conduct two ablation studies to explore the
influence of the input instructions on our model performance. Our
first study examines the impact of perturbing the structured instruc-
tions through: V1) expanding the dictionary with unseen words
and phrases, without modifying the sentence structure; V2) em-
ploying LLM to reformulate the structured prompt into a synony-
mous, unstructured sentence. Over 60 testing cases, the success rate
(strict/relax) for original, V1-perturbed, and V2-perturbed prompts
are 0.933/0.966, 0.916/0.950, and 0.833/0.900, respectively. The mar-
ginal drop in performance demonstrates the stability of our ap-
proach to prompt noises. Our second study assesses the stability
of LLM-based text canonicalization. We conduct ten rounds of
text canonicalization using LLM on ten scenarios, recording the
simulation results for each round. In this setting, we achieve an
average (strict) success rate of 0.936 with a variance of 0.041. Such
consistently high success rate demonstrates the LLM’s reliable per-
formance in text canonicalization.

To evaluate the effectiveness of our velocity field adjustment
procedure described in Algorithm 1, we train two diffusion models
using velocity fields before and after adjustment respectively and
create two crowd animations accordingly. As shown in the com-
parative results in Figure 4 (b), the velocity field before adjustment
(left) pushes agents to be concentrated, forming an unnatural queue,
while the adjusted field (right) results in more plausibly scattered
agent distributions.

5 CONCLUSION & DISCUSSION
We propose a learning-based, text-guided method for generating
multi-agent navigation scenarios from high-level text descriptions.



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Xuebo Ji, Zherong Pan, Xifeng Gao, and Jia Pan

This problem has potential usage in automatic content creation for
the game industry. To the best of our knowledge, our work is the
first method addressing this task. Our method has several short-
comings. First, the complexity of our synthetic dataset is not high
enough for modeling realistic open-world environments. Future
works could harness existing crowd prediction and environment
datasets, but annotating these datasets could be rather challenging.
Further, our method cannot model more complex agent actions, in-
cluding inter-action communications and time-dependent motions.
It would also be interesting to integrate language-conditioned be-
haviors for individual agents into the framework. Again, the main
challenges in modeling these motions lie in the dataset construction
and devising efficient, learnable representation. Finally, our method
requires users to describe the behavior of each agent group, which
requires a long text script in complex cases.

ACKNOWLEDGMENTS
This research project is partially supported by the Innovation
and Technology Commission of the HKSAR Government under
the InnoHK initiative, Hong Kong General Research Fund
(11202119 and 11208718), Innovation and Technology Commission
(GHP/126/21GD), and Guangdong, Hong Kong and Macao Joint
Innovation Project (2023A0505010016).

REFERENCES
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023).

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei,
and Silvio Savarese. 2016. Social lstm: Human trajectory prediction in crowded
spaces. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 961–971.

Tenglong Ao, Zeyi Zhang, and Libin Liu. [n. d.]. GestureDiffuCLIP: Gesture Diffusion
Model with CLIP Latents. ACM Trans. Graph. ([n. d.]), 18 pages. https://doi.org/10.
1145/3592097

Gideon DPA Aschwanden, Simon Haegler, Frédéric Bosché, Luc Van Gool, and Ger-
hard Schmitt. 2011. Empiric design evaluation in urban planning. Automation in
construction 20, 3 (2011), 299–310.

Aniket Bera, Sujeong Kim, and Dinesh Manocha. 2016. Interactive and adaptive data-
driven crowd simulation: User study. In 2016 IEEE Virtual Reality (VR). 325–325.
https://doi.org/10.1109/VR.2016.7504784

Robert Bridson. 2007. Fast Poisson disk sampling in arbitrary dimensions. SIGGRAPH
sketches 10, 1 (2007), 1.

Tianshi Cao, Karsten Kreis, Sanja Fidler, Nicholas Sharp, and Kangxue Yin. 2023.
Texfusion: Synthesizing 3d textures with text-guided image diffusion models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 4169–4181.

Nilay Chakraborty, Brandon Haworth, Muhammad Usman, Glen Berseth, Petros Falout-
sos, and Mubbasir Kapadia. 2017. Crowd sourced co-design of floor plans using
simulation guided games. In Proceedings of the 10th International Conference on
Motion in Games. 1–5.

Emir Cogo, Ehlimana Krupalija, Irfan Prazina, Šeila Bećirović, Vensada Okanović,
Selma Rizvić, and Razija Turčinhodžić Mulahasanović. [n. d.]. A Survey of Pro-
cedural Modelling Methods for Layout Generation of Virtual Scenes. Com-
puter Graphics Forum n/a, n/a ([n. d.]), e14989. https://doi.org/10.1111/cgf.14989
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14989

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
2017. CARLA: An open urban driving simulator. In Conference on robot learning.
PMLR, 1–16.

Kenny Erleben, Jon Sporring, Knud Henriksen, and Henrik Dohlmann. 2005. Physics-
based animation. Vol. 79. Charles River Media Hingham.

Tian Feng, Lap-Fai Yu, Sai-Kit Yeung, KangKang Yin, and Kun Zhou. 2016. Crowd-
driven mid-scale layout design. ACM Trans. Graph. 35, 4 (2016), 132–1.

Paolo Fiorini and Zvi Shiller. 1998. Motion planning in dynamic environments using
velocity obstacles. The international journal of robotics research 17, 7 (1998), 760–772.

Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan.
2012. Example-based synthesis of 3D object arrangements. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 1–11.

R. Ghzouli, T. Berger, E. Johnsen, A.Wasowski, and S. Dragule. 2023. Behavior Trees and
State Machines in Robotics Applications. IEEE Transactions on Software Engineering
49, 09 (sep 2023), 4243–4267. https://doi.org/10.1109/TSE.2023.3269081

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139–144.

Shihui Guo, Richard Southern, Jian Chang, David Greer, and Jian Jun Zhang. 2015.
Adaptive motion synthesis for virtual characters: a survey. The Visual Computer 31
(2015), 497–512.

Stephen J Guy, Sujeong Kim, Ming C Lin, and Dinesh Manocha. 2011. Simulating
heterogeneous crowd behaviors using personality trait theory. In Proceedings of the
2011 ACM SIGGRAPH/Eurographics symposium on computer animation. 43–52.

Liang He, Jia Pan, Wenping Wang, and Dinesh Manocha. 2016. Proxemic group behav-
iors using reciprocal multi-agent navigation. In 2016 IEEE international conference
on robotics and automation (ICRA). IEEE, 292–297.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Van Kaick, Hao Zhang, and Hui Huang.
2020. Graph2plan: Learning floorplan generation from layout graphs. ACM Trans-
actions on Graphics (TOG) 39, 4 (2020), 118–1.

Ioannis Karamouzas, Nick Sohre, Rahul Narain, and Stephen J Guy. 2017. Implicit
crowds: Optimization integrator for robust crowd simulation. ACM Transactions
on Graphics (TOG) 36, 4 (2017), 1–13.

Tom Kelly, Paul Guerrero, Anthony Steed, Peter Wonka, and Niloy J. Mitra. 2018.
FrankenGAN: Guided Detail Synthesis for Building Mass Models Using Style-
Synchonized GANs. ACM Trans. Graph. 37, 6, Article 216 (dec 2018), 14 pages.
https://doi.org/10.1145/3272127.3275065

Dong-Hun Kim. 2004. Self-organization for multi-agent groups. International Journal
of Control, Automation, and Systems 2, 3 (2004), 333–342.

Jongmin Kim, Yeongho Seol, Taesoo Kwon, and Jehee Lee. 2014. Interactive manipu-
lation of large-scale crowd animation. ACM Transactions on Graphics (TOG) 33, 4
(2014), 1–10.

Sujeong Kim, Aniket Bera, Andrew Best, Rohan Chabra, and Dinesh Manocha. 2016.
Interactive and adaptive data-driven crowd simulation. In 2016 IEEE Virtual Reality
(VR). IEEE, 29–38.

Sujeong Kim, Stephen J Guy, Dinesh Manocha, and Ming C Lin. 2012. Interactive
simulation of dynamic crowd behaviors using general adaptation syndrome theory.
In Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics and
games. 55–62.

Marilena Lemonari, Rafael Blanco, Panayiotis Charalambous, Nuria Pelechano, Marios
Avraamides, Julien Pettré, and Yiorgos Chrysanthou. 2022. Authoring virtual
crowds: A survey. In Computer Graphics Forum, Vol. 41. Wiley Online Library,
677–701.

Weizi Li, David Wolinski, Julien Pettré, and Ming C. Lin. 2015. Biologically-inspired
visual simulation of insect swarms. In Computer Graphics Forum, Vol. 34. Wiley
Online Library, 425–434.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. 2023.
Text2Motion: from natural language instructions to feasible plans. Autonomous
Robots (14 Nov 2023). https://doi.org/10.1007/s10514-023-10131-7

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101 (2017).

Linbo Luo, Xinyu Wang, Jianfeng Ma, and Yew-Soon Ong. 2021. Grpavoid: Multigroup
collision-avoidance control and optimization for UAV swarm. IEEE Transactions on
Cybernetics (2021).

Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and Dinesh
Manocha. 2019. Trafficpredict: Trajectory prediction for heterogeneous traffic-
agents. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 6120–
6127.

Duc Thanh Nguyen, Wanqing Li, and Philip O Ogunbona. 2016. Human detection
from images and videos: A survey. Pattern Recognition 51 (2016), 148–175.

Masaki Oshita and Yusuke Ogiwara. 2009. Sketch-based interface for crowd animation.
In Smart Graphics: 10th International Symposium, SG 2009, Salamanca, Spain, May
28-30, 2009. Proceedings 10. Springer, 253–262.

Sachin Patil, Jur Van Den Berg, Sean Curtis, Ming C Lin, and Dinesh Manocha. 2010. Di-
recting crowd simulations using navigation fields. IEEE transactions on visualization
and computer graphics 17, 2 (2010), 244–254.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021.
Amp: Adversarial motion priors for stylized physics-based character control. ACM
Transactions on Graphics (ToG) 40, 4 (2021), 1–20.

Julien Pettre, Jean-Paul Laumond, and Daniel Thalmann. 2005. A navigation graph for
real-time crowd animation onmultilayered and uneven terrain. In First International
Workshop on Crowd Simulation, Vol. 43. Pergamon Press New York, 194.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2022. DreamFusion:
Text-to-3D using 2D Diffusion. arXiv (2022).

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International conference on machine learning. PMLR, 8748–8763.

https://doi.org/10.1145/3592097
https://doi.org/10.1145/3592097
https://doi.org/10.1109/VR.2016.7504784
https://doi.org/10.1111/cgf.14989
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14989
https://doi.org/10.1109/TSE.2023.3269081
https://doi.org/10.1145/3272127.3275065
https://doi.org/10.1007/s10514-023-10131-7


Text-Guided Synthesis of Crowd Animation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris Kitani, Karsten Kreis, Sanja
Fidler, and Or Litany. 2023. Trace and Pace: Controllable Pedestrian Animation via
Guided Trajectory Diffusion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 13756–13766.

Adriano MC Rezende, Vinicius M Goncalves, and Luciano CA Pimenta. 2021. Construc-
tive time-varying vector fields for robot navigation. IEEE Transactions on Robotics
38, 2 (2021), 852–867.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
2022. High-resolution image synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 10684–10695.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 234–241.

Pavel Senin. 2008. Dynamic time warping algorithm review. Information and Computer
Science Department University of Hawaii at Manoa Honolulu, USA 855, 1-23 (2008),
40.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan
Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. 2023. Progprompt:
Generating situated robot task plans using large language models. In 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 11523–11530.

Daniel Thalmann, Christophe Hery, Seth Lippman, Hiromi Ono, Stephen Regelous,
and Douglas Sutton. 2004. Crowd and group animation. In ACM SIGGRAPH 2004
course notes. 34–es.

Adrien Treuille, Seth Cooper, and Zoran Popović. 2006. Continuum crowds. ACM
Transactions on Graphics (TOG) 25, 3 (2006), 1160–1168.

Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. 2011. Reciprocal
n-body collision avoidance. In Robotics Research: The 14th International Symposium
ISRR. Springer, 3–19.

Jur Van den Berg, Ming Lin, and Dinesh Manocha. 2008. Reciprocal velocity obstacles
for real-timemulti-agent navigation. In 2008 IEEE international conference on robotics
and automation. Ieee, 1928–1935.

Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin Bao, Tadas Baltrusaitis,
Jingjing Shen, Dong Chen, Fang Wen, Qifeng Chen, et al. 2023. Rodin: A generative
model for sculpting 3d digital avatars using diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4563–4573.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016.
Learning a probabilistic latent space of object shapes via 3d generative-adversarial
modeling. Advances in neural information processing systems 29 (2016).

Xiaohan Ye, Zherong Pan, Xifeng Gao, Kui Wu, and Bo Ren. 2023. Differentiable
Learning of Scalable Multi-Agent Navigation Policies. IEEE Robotics and Automation
Letters 8, 4 (2023), 2229–2236.

Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen, Sushant Veer, Tong Che,
Baishakhi Ray, and Marco Pavone. 2023. Guided conditional diffusion for con-
trollable traffic simulation. In 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 3560–3566.

Wentao Zhu, Xiaoxuan Ma, Dongwoo Ro, Hai Ci, Jinlu Zhang, Jiaxin Shi, Feng Gao,
Qi Tian, and Yizhou Wang. 2023. Human motion generation: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2023).



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Xuebo Ji, Zherong Pan, Xifeng Gao, and Jia Pan

A <group_size> group
<action> the( <action_location> side of the)( <entity_location>) <entity_name>( [action_adjective]),
<action> the( <action_location> side of the)( <entity_location>) <entity_name>( [action_adjective]),
...

Figure 3: The canonical structure of the sentence, where each comma-separated clause describes an action of the agent group, in temporal order.
The terms in () bracket are optional and the terms in each <> or [] bracket must be chosen from a preset dictionary provided to GPT-4. Here the
< action > indicates the type of agent motion, such as “enter area”, “pass by”, “circle around”, etc. The < action_location > indicates the location
of an anchor point relative to an environment entity and the < entity_location > describes the location of an entity in world space, if multiple
entities of the same type exist. For example, we can refer to “the top left corner of the upper circular obstacle”. Finally, the [action_adjective]
describes the direction along which an agent group interacts with the obstacle, e.g., we can say that “an agent group circles around a cubic obstacle
anticlockwise”.

(a) Two different crowd simulations generated with the same prompt “A big
group enters from the left entrance, moves past the circle, walks through the
passage, exits through the exit.”. The drastically different crowd distributions and
behaviors demonstrate the controllable diversity of our model.

(b) Compared with the model trained without field adjustment (left), our model
(right) generates more scattered and realistic agent motions.

Figure 4: Additional results showing the diversity (a) and plausibility (b) of our model.

Input:
There are hundreds of humans escaping through the pas-
sage from the open space above the map to the exit below.

GPT-4 Output:
𝑠1: A large group enters from the upper entrance, moves
through the passage, exits through the bottom exit.

𝐼1
𝑣 Simulated Agents

Figure 5: A scenario with a large swarm of agents. We show the canonicalized {𝑠 𝑗 } and the predicted {𝐼 𝑗𝑣 }. The start/goal regions are marked in
green and red, respectively.



Text-Guided Synthesis of Crowd Animation SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Input:
This garden contains a total of 6 small groups of visitors.
The first two groups enter from the main entrance in the
top right corner and both of them walk through the upper
right passage first. Afterward, one group passes the left
side of the circular fountain, then gets through the gar-
den passage and leaves at the bottom left exit. Another
group follows a different path where they circle around
the upper left rectangular groves counterclockwise and
visit the fountain, finally exit through the bottom gate.
Another two groups get in from the right gate. One group
just visits the fountain and leaves through the bottom left
export. Another group firstly moves towards the triangu-
lar entertainment area and circles around the lower side
of it clockwise, then they pass by the fountain and cir-
cle around the upper left groves counterclockwise, finally
leave through the left gate. The final two groups enter
from the top entrance. One of them passes by the right
of the upper left groves, circles around the fountain, and
leaves the map through the left gate. Another small group
visits the lower side of the fountain first. Then, they get
around the triangular entertainment area and exit through
the bottom export.

GPT-4 Output:
𝑠1: A small group enters from the top right entrance, walks
through the upper right passage, passes by the left side of
the circle, moves through the passage, exits through the
bottom left exit.
𝑠2: A small group enters from the top right entrance, walks
through the upper right passage, circles around the upper
left rectangle counterclockwise, passes by the circle, exits
through the bottom exit.
𝑠3: A small group gets in from the right entrance, passes
by the circle, exits through the bottom left exit.
𝑠4: A small group gets in from the right entrance, circles
around the lower side of the triangle clockwise, passes by
the circle, circles around the upper left rectangle counter-
clockwise, exits through the left exit.
𝑠5: A small group enters from the top entrance, passes by
the right side of the upper left rectangle, circles around
the circle, exits through the left exit.
𝑠6: A small group enters from the top entrance, passes by
the lower side of the circle, circles around the lower side
of the triangle, exits through the bottom exit.

𝐼1
𝑣 𝐼2

𝑣 𝐼3
𝑣 Simulated Agents

𝐼4
𝑣 𝐼5

𝑣 𝐼6
𝑣 Simulated Agents

Figure 6: A complex scenario with 6 agent groups. We show the input 𝑇 , the canonicalized {𝑠 𝑗 }, and the predicted {𝐼 𝑗𝑣 }. The start/goal regions
are marked in green and red, respectively.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic Content Creation
	2.2 Crowd Animation
	2.3 Crowd Simulation
	2.4 Language-Guided Generative Models

	3 Method
	3.1 Multi-Agent Navigation Scenario Synthesis
	3.2 Generating Canonicalized Text Prompts
	3.3 Diffusion-based Agent Generation & Control
	3.4 Dataset Preparation and Training

	4 Evaluation
	5 Conclusion & Discussion
	Acknowledgments
	References

